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ABSTRACT 

An eigenvalue problem arising in the treatment of laminar boundary layers nearly 
described by solutions of the Falkner-Skan equation is handled by application of 
quasilinearization. The technique would appear to be applicable to a variety of eigen- 
value problems arising in physics. 

1. INTRODUCTION 

Many of the eigenvalue problems arising in physics require numerical treatment 
for the determination of their eigenvalues and related eigenfunctions. Our purpose 
here is twofold: to point out that the quasi-linearization technique of Bellman and 
Kalaba [I], [2] may be simply extended to permit treatment of such eigenvalue 
problems and to describe the application of this extension to an eigenvalue pro- 
blem which arises in fluid mechanics and which differs in some respect from those 
usually occurring in other fields [3], [4]. 

2. DESCRIPTION OF THE PROBLEM 

At the outset we present the eigenvalue problem and the physical context in 
which it arises and then describe how it can be handled by quasi-linearization. The 
application of the technique to other problems will be obvious. 

We consider the flow in a laminar boundary layer with constant fluid properties. 

1 This research was supported by the Advanced Research Projects Agency (Project 
DEFENDER) and was monitored by the U.S. Army Research Office-Durham under Contract 
DA-31-124-ARO-D-257. 
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The potential flow external to the boundary layer is characterized by a velocity, 
denoted by ue(x), tangent to the surface, on which the boundary layer is developing; 
x and y are the coordinates measured, respectively, along and normal to the sur- 
face. The x-wise momentum equation and the continuity equation describe the 
x and y components of the velocity field, denoted by u and o, respectively. The 
treatment of these two equations is simplified by a transformation x, y + s, 77 where 
s = s(x), 71 = 7(x, y), both given, and by introduction of a stream function, 
f(s, 7). The transformation results in the external flow being described by a single 
function /3 3 (2s/u,)(due/ds) = /3(s). S ince the velocity components are expressible 
in terms off and its derivatives, the description of the boundary layer is given by 
the solution of a parabolic partial differential equation for f(s, 7) satisfying initial 
data at some initial station, s = sr , and boundary conditions at 7 = 0, 7 + 00. 

For present purposes we are interested in flows which are similar and in flows 
which are almost similar. By similar flows we mean those for which the external 
flow velocity varies so that p is a constant, for which the initial data are not speci- 
fied, and for which the boundary conditions on f (s, r) are independent of s. For 
such flows the partial differential equation degenerates to an ordinary one forf(7). 
Suppose we consider a flow which would be similar, i.e., /? is a constant and the 
boundary conditions are independent of s, but which has initial data close to, but 
not identical with, that corresponding to similarity. Thus the initial data are 
forcing a slight nonsimilarity. The words “close to” and “slight” of course imply a 
linearized deviation from similarity. The perturbed flow is described by a linear 
partial differential equation whose solution by means of separation of variables, 
S(s) N(v), leads to the following eigenvalue problem: 

N,” + fNn” + (A, - 2j3)f’Nn’ + (1 - X,)f”N, = 0, 

N,(O) = N,‘(O) = N,‘(co) = 0, 
(1) 

where ( )’ denotes differentiation with respect to the independent variable 
7 = r)(x, JJ); where X, is the eigenvalue; where /? is a constant as alluded to above; 
and where the coefficients depend on the functionf(7) describing the similar flow 
and defined by 

f” +ffn + B(1 -.P) = 0, 

J-69 =f’@) = 0, (2) 

f’(co) = 1. 

Equation (2) is the so-called Falkner-Skan equation whose solution for a given ,3 
may be assumed known numerically. In particular, f “(0) is known for a given fi. 
Actually for fi < 0 the boundary condition at 7 -+ co as given in Eq. (2) is not 
sufficient to assure uniqueness, it being necessary to require thatf ‘(7) - 1 should 
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become exponentially small as 3 + co. Correspondingly, N,‘(q) must be required 
to go to zero exponentially as q+ co2 

3. ANALYSIS 

The requirement of exponential decay as 7 + cc can be stated quantitatively by 
the following: as rl - co Eq. (1) takes on the approximate form, reflecting the 
asymptotic behavior off(q), 

N,,” + (r] - K) N,” + (h, - 2j?) N,’ = y&(cO)(& - l)(q - K)-” eXP[- (7) - Kj2/2] 

(3) 
where K and y are parameters depending on /3 and arising from the asymptotic 
behavior off(v); i.e., 

f(v) = (‘I - K) + y(T - .)-‘2’+2) 

x eXp[- (7) - 42/2][ 1 - (1/2)(@ $ 2)(@ + 3)(7 - ‘+2 + o(‘) - K)-“1. (4) 

Equation (3) applies for all v > q* provided v* is sufficiently large so that the 
second term in [ ] in Eq. (4) is negligible compared to unity and so that N,(q) may 
be approximated by N,( co). In fact these considerations permit estimates of r)* to 
be made. 

Equation (3) may be put in the form of an inhomogeneous Weber equation by 
the substitution Z, = exp[(q. - ~)~/4] N,‘; there is no solution to this equation in 
terms of elementary functions but an asymptotic approximation applicable to 
11> 7** can be made (cf. [6]). Of- the two complementary solutions for Z, only 
the one proportional to exp[- (‘I - ~)~/4] is acceptable; the second proportional 
to exp[(T - K)‘/4] would lead to unacceptable algebraic decay of N,’ as v -+ co. 
We may use the asymptotic approximations for Z, and an approximate complemen- 
tary solution to Eq. (3) to find a relation between N,’ and N,” applicable for 
71>rl ** on all solutions with acceptable asymptotic behavior. This relation is 

N,,” ‘v - (r] - K) &‘[I + (1 - h, + 2j9(7) - K)-2 + o(q - K)-“1 

+ (1 - LJ YNn(~)(rl - KF ‘@+‘) eXp[- (7) - K)2/2][1 + o(?j - K)-2], (5) 
where the second term in the first [ ] on the right-hand side provides a means for 
estimatng 17 **. Equation (5) applied at 7 = T** may be ‘considered to provide a 
substitute for the boundary condition N,‘(a) = 0. 

Now f’(q) is a solution to Eq. (1) but for p > &, , where PO is a particular, 
critical value of j3, it is not an eigenfunction since it does not satisfy the boundary 

e The reader is referred to [S] for a detailed discussion of Eq. (2). 
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condition N,‘(O) = 0.3 Considering only fl > PO , we can reduce Eq. (1) to a 
second-order equation which in many respects is in accord with a classical Sturm- 
Liouville problem.4 It suffices for present purposes to indicate that the usual 
procedures may be followed to prove that the h, are real. The basis of a straight- 
forward numerical method for the determination of the h,‘s and related N,(n)‘s 
for a particular /3 now exists as follows: With apriori assumptions for X, , T*, and 
rl **, Eq. (1) may be integrated numerically over the range 0 < 7 < q* with the 
third condition at 71 = 0 taken to be a normalization N,“(O) = 1, for example. In 
this integration it is usually convenient to integrate simultaneously Eq. (2) in 
order to provide the coefficients at the requisite values of 7. Assuming that 
N,(co) = N,(n*) as determined by this outward integration, we may perform 
numerically two inward integrations of Eq. (3), one of the homogeneous equation 
providing a complementary solution and a second of the equation with the right- 
hand side present. The former integration denoted N,,, has initial conditions 

Nn,,“(v**) = - CT** - K)[I + (1 - &, + 219)(7** - 4’1, K,c’h**) = 1 

and the latter 

N,,.“(T**) = (I - A,,) yN,(oo)(~** - K)-(~@+~) eXp[- (7)** - K)2/2], 

N,,.“(q**) = 0. 

The complementary solution may be scaled so that at n = q*, N’(q) is continuous. 
However, in general N”(7)*) will be discontinuous so that an error measure for 
the proper selection of h, is established, and various techniques may be employed 
to reduce this error to a suitably small value. As this trial-and-error procedure 
progresses, revised estimates for r]* and n** may be made.5 

Now application of quasi-linearization to this problem replaces trial-and-error 
by iteration. For simplicity in notation let G, = N,“, F = N,‘. The quasilinear 
versions of Eqs. (1) and (3) with h, treated as a parameter subject to iteration in the 
former and both X, and N,,(co) similarly treated in the latter are 

(k+l)(-&' = 
I(- f' ""'Fn + f 

n (WNn)((k+l)hn - (k)hn)] 

-ej-'"+"Gn -f'(W)& _ 28) W+l)Fn 

- (1 _ (WAn)f" W+l)N, 

(k+l,F, = (k+l,,--& 
_. 

(k+l)N,' = (k+l,Fn 

(14 

3 The case /I = ,8,, = -0.1988 is pathological; f’(v) is an eigenfunction for any eigenvalue. 
4 Our problem differs from the classical one in that the usual proofs of X, > 0 do not apply 

for 8 < 0 and in that the usual proofs of the existence of a minimum h, do not apply to the lower 
branch solutions to Eq. (2). 

5 This technique is used in [7] ; in a forthcoming paper, S. N. Brown shows that the high eigen- 
values, e.g., n = 17, 18, 19, 20, for /I = 0 can be accurately estimated by analytic means, 
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and 
(k+l'Gn' = [(- (k)F, + y(y - K)-~O exp[- (7j - ~)~/2] (k)N,(co))((k+l)h, - ck)h,) 

+ y(ck’& - l)(7) - K)-2B eXp[- (7 - K)2/2] (k+l’Nn(CO)] 

- (v - K) ‘“+l’G, - ((k’h, - ‘$9) (k+l'Fn 

‘k+l’Fn’ = Ck+l’G 
n, W 

where the quantities with the iteration index (k) are known and those with the 
index (k + 1) are to be calculated. Note that the treatment of h, as a parameter 
adds additional terms to the right-hand sides of the first of Eqs. (la) and (3a) and 
that the quantities in [ ] in these equations yield particular solutions. 

As in the straightforward numerical method described above a priori estimates 
for T* and q** must again be made. Numerical solutions of Eqs. (la) and (3a) are 
constructed as follows: For 0 < 7 < q* we let 

'k+l)& = 'k+l'Gn,c + ((k+l'Xn - (k'jj,) (k+l'(& (6) 

with similar expressions for fk+l'Fn and (k+l’N, and with initial conditions 

‘k+l’Gn,c(0) = 1, 
(k+l'Fn,c(0) = fk+l'N,&O) = fk+l'G,&O) = ck+l'Fn,p(0) = (k+l'Nn,p(0) = 0. 

The subscripts ( )n,e and ( )n,P denote complementary and particular, respectively. 
For T* < ~7 < q**, we let 

(R+l'G, = (k+l'A (k+l'G, c 
* -t( 

(k+l'Xn - IL'&) Ck+l'G, o 1 
. 9 

+ 'k+l'Nn(a) (k+l’Gn ,, 2 , * . (7) 

with a similar expression for ck+l'Fn and with the above subscript notation extended 
relative to the particular solutions to indicate the splitting of the particular solution 
into two parts so as to permit factoring of (fk+l)Xn - fk)h,) and tk+l)N,(co). In 
Eq. (7), tk+l)A is an arbitrary constant. 

The initial conditions pertaining to the set of solutions indicated by Eq. (7) apply 
at 71 = q** and derive from Eq. (5); we take 

(k+l’& cac* = -(T - K)[l + (1 - lk’X, + 2#9s>cv - K)-2&,,** 
‘k+l’Fn Ew = 1 

(k+l’Gk 9 2.e = (1 - ‘k’/\,) r(?j - K)-(28+1’ eXp[-(?j - K)“/2]1,-,** 
(8) 

* * 

‘k+l’G, ?, 1e, = . 9 ‘k+l’& 9 1** = ‘k+l’F% 1 2~* = 0. * , 3 I 

With the solutions indicated by Eq. (6) obtained by outward integration and 
those by Eq. (7) by inward integration the values of both sets at ~7 = v* may be 
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obtained and requirements of continuity of tk+l)Gn , fR+l)F, , (!+l)N, at 77 = r]* 
imposed. These requirements lead to the determination of ck+l)X, , (k+l)A and 
(k+“N,(r~) and thus by means of Eqs. (6) and (7) and their related expressions for 
the other variables to the complete determination of the (k + 1) approximation 
of the eigenfunction. 

Iteration can be continued until successive values of h, and N,(a) agree within 
some specified tolerance. At each iteration the inequalities which determine 
r)* and q** can be validated; if T** must be increased, ck)Fn and (k)N,(~) in the 
extended region are taken to be equal to zero and to ‘Ic)N,(co), respectively. The 
zero approximations in the iteration cycle, i.e., k = 0, are determined by a straight- 
forward numerical integration of Eq. (1) for 0 < 71 < y* with an initial assump- 
tion for X, , i.e., for (O)h, and by the approximations ‘O’F, = 0, f”‘Nn(co) = (“)Nn(~*) 

** forr)*<v<T . 

4. CONCLUDING REMARKS 

We have found the above technique to be efficient and, for most values of fl and 
for h, > 0, to lead to an eigenvalue and eigenfunction in several iterations. The 

2 

FIG, 1. Typical eigenfunctions in terms of N,' - p = &. 
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characteristics of the eigenvalues are such that after the first few have been com- 
puted their spacing permits close estimates for subsequent values to be made. 
There are for /? < 0 negative values of A,; for these it is sufficient to carry out the 
outward integration in the range 0 < v < T* where in this case T* is selected to be 
in the nonoscillatory range of the asymptotic solution and to impose there the 
simple finite condition F* = 0. 

To illustrate our results we show in Fig. 1 the first five eigenvalues and eigen- 
functions in terms of IV,’ for the case /3 = 4. Similar results are readily calculated 
for other j3. 
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